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Section 1 - Introduction 
Current implementation of RBC framework in HK leaves out catastrophe modelling because 

of absence of resources and experience to implement it. In order to help local companies to bridge 

that gap, we offer an insight into potential ways to estimate worst case outcomes for unlimited 

exposures, and thereby try to get a sense of what a catastrophic claim may look like. 

 

With increasing amount of data we are now in a world where risks can be split into 

increasingly minute categories. Whether it’s pleasure craft portfolio, or commercial reinsurance, 

with few data points there are increased uncertainties with regards to the claim outcomes. But even 

without that, in our work actuaries are regularly faced with censored distributions - from 

deductibles, to limits, from capping to cupping. 

 

Recent research into the subject has yielded exploration of robotic reserving [Robotic 

Reserving – Are We There Yet], individual stochastic model creation [CR Larsen, 2017]. However, 

none of these papers addressed the inherent censoring that is present when so few data points 

exist. 

 

Maximum likelihood principle is ideally suited to operate in those situations, unlike method 

of moments, which does not generate the most efficient estimators of the unknown parameters. 

This is particularly true when the distributions have non-neutral skew and kurtosis. 

 

To simplify the idea of the expectation maximisation (EM) algorithm beyond permissible 

measure is to say that “the algorithm takes the change from one probability column of the 

histogram to another and tries to find parameters of a distribution that would fit these changes 

well”. This explanation is riddled with problems but is clear enough for a practitioner. The original 

paper introducing the algorithm comes from Dempster et al. (1977) [Marginal pdf to fit to 

distribution] 

 

One of the attractive features of ML estimators in trying to assess the underlying distribution 

of a particular values is its lack of conservatism, it is true that for large uncertainty around the 

parameters ML estimator has twice the variance  of other estimators [example 18.5 Kendall 2A p57] 

 

Our approach also helps to combat anchoring bias by providing practitioners a set of tools to 

reassess anchoring bias (p5) from the previous results (where the estimate was made based on 

existing data, and future estimates are made to insure consistency with the previous estimates, 

instead of assessing the emerging distribution of outcomes). In more simplistic terms, when you are 

facing more extreme outcomes that fall within the same range, it typically implies that the 

underlying distribution is probably more volatile than originally assessed (standard and trending 

outside of you insurance window). [Trends changes can be unclear like increasing variance isn’t 

identical to trending mean] 

http://actuaries.asn.au/Library/Events/GIS/2014/6DSimsReservingPres.pdf
http://actuaries.asn.au/Library/Events/GIS/2014/6DSimsReservingPres.pdf
http://www.actuaries.asn.au/Library/Events/GIS/2016/PaperCohenWhite.pdf
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Although in ideal world we would be able to test the estimations we make on new data, or 

at least set aside some portion of the data to test the fit, we typically lack sufficient data to split the 

observations into test and sample set. Hence, we put forward an approach to think about the 

uncertainty surrounding the models by fitting several models to the data. 

 

The paper is structured as follows: in section 2 basic methodology and EM algorithm, 

Pearson’s distributions, and Extreme value estimation are outlined. In section 3 We describe its 

implementation and adjustments that we make to account for categorical variables, and variables 

with limited boundary values. In section 4 we show how the method can be applied to 3 datasets. In 

section 5 we analyse the results. In section 6 we summarise our work and explore future 

developments. 

 

 

Section 2 - Basic Methodology 
When we talk about censoring it is important to know that it’s not just deductibles and 

excesses we speak off, but also lack of availability of the whole information set limited by the 

newness of portfolio or claim type. 

We’ve attempted to adopt a comprehensive approach to the analysis by breaking down the 

problems with the current approach(es) and trying to address them. 

2.1 Why Pearsons family of distributions? 

Most of the back-of-the envelope approaches to tail estimation center around distributions 

where skew and kurtosis cannot be set by the user. By moving away from more commonly accepted 

ones towards Pearsons family, we’ve attempted to address the issue of being able to explicitly adjust 

the skew and kurtosis of the severity distributions. 

 

The reasons Pearson’s offer lucrative set of distributions is because they include fat tailed 

distributions such as Levy distribution (type V), Cauchy, t-distributions (both two-tailed type IV 

distributions) and their shapes are far more varied than generalised Pareto which is extensively used 

for tail modelling but limited to skewed distribution. The reasons why Pearson’s sometimes doesn’t 

fare much worse than Generalised Extreme Value, as we will show, is because it does not tie the 

numbers to any particular shape of the distribution, and attempts to estimate them outright. 

Although one may argue that this makes for an unappealing feature of the method, we do not 
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believe this to be the case - since this leaves the flexibility to create any pdf shape that the data fits 

best. 

 

Ideally, we would want to use an EM algorithm to estimate the key parameters of the 

distribution. However, as of now the approach is not available, and we tried to shy away from 

building new tools.  

 

The method used to estimate the key parameters for the Pearson’s distributions was a 

maximum likelihood method which addresses some of the concerns of the missing data that we’ve 

tried to capture for the two other methods. Further discussion of the method can be found in 

section 3.1. 

 

To quote directly from R documentation of the creator: “First, the empirical moments of the 

input vector are calculated. In the second step, the moments are altered, such that the moment 

restrictions for the current sub-class are fulfilled (if necessary), and the method of moments estimator is 

calculated to obtain starting values for the optimizer. In the last step, the starting values are adjusted (if 

necessary) in order to assure that the whole sample lies in the support of the distribution” 

2.2 Why EM algorithm on mixed distributions? 

EM algorithm is brilliant it works on incomplete datasets, by working with the relationships 

of the existing pdf values. There are a number of papers explaining it’s elegance, and we strongly 

recommend to anybody with similar inclinations to read them (please see Appendix 1). We will test 

several distributions with EM algorithm and try to determine the best one to use. 

 

The EM algorithm made up of two steps (E for expectation, M for maximisation) acts as follows: 

In step 1: We estimate the missing data, on the currently available data: assume that 

Q(∅′|∅k) = 𝑬{𝒍𝒐𝒈 𝑳(𝑥|∅′)| y,∅k} exists for all x  and ∅, where L is the likelihood to be maximised. Let 

∅k denote the estimate of ∅ obtained on the kth iteration. Then we progress as follows : 

Evaluate 𝑸(∅′|∅), which is the conditional expectation taken over the unknown (missing) elements 

of x. 

In step 2 we maximise the likelihood under assumption that the missing data is known: We 

determine∅(k+1)  such that the value of ∅maximises Q(∅′|∅k) 

Inserting theta into the probabilities allows us to optimise how much of the distribution is “missing”. 

 

We are  faced with a situation where only part of the density function is known (the lower 

observations are censored because of deductible), higher may have not been observed yet. In this 

situation we neither know the parameters of the distribution, nor its parameters. One of the main 

methods advantages is that it requires only the gradient. 

 

https://www.rdocumentation.org/packages/PearsonDS/versions/0.97/topics/pearsonFitML
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The tail distributions carries little correlation to the body of the distribution, so if this 

principle is extended beyond simple separation into body and tail, and into ‘normal’ tail and 

‘extreme’ tail mixture distributions with multiple means start to make sense. For this analysis (and 

partially due to low data availability) we’ve limited the number of distributions to 2. In larger 

datasets, there is no reason to set this number at 2. The idea is to place reliance on the ability of EM 

algorithm to discern between two underlying datasets. 

 

We’ve performed this analysis for both normal and lognormal distributions for severity. As 

expected, even with allowance for mixture distributions normal distributions proved to a poor proxy 

for the tail of severity, however lognormal fittings created mostly far more reasonable values. 

2.3 Why Extreme Value Theory? 

Not every large claim in the portfolio will fall in the storyline of extreme value, and hence to 

some degree Generalised Extreme value approach (GEV) serves as an indicator of a conservative 

approach to estimation of severity.  We have used the GEV as the approach allowed us to forgo 

making assumptions about the data. Generalized Pareto can be used instead, by practitioners with 

more insight into the process. 

Section 3 - Implementation 
In working with the data we have made extensive use of several excellent packages: 

“PearsonsDS”, “extRemes”, and “mixtools”, which allows users to customised distribution based on 

a few inputs. 

 3.1 PEARSONS Family of Distributions 

The packages were selected according to their capability to fit distributions to long tail of 

parameters. Pearsons was chosen because of the ability to estimate an entire family of distributions 

based on few inputs, extRemes, because of its Extreme Value capability, and mixtools for the 

gaussian mixture distributions, which also extended to lognormal models. 

 

Additionally, we’ve used mixtools to estimate mix gaussian models - as Rekik and co. paper 

demonstrates, they offer an excellent fit to distributions which have two or more “underlying 

drivers” so to speak. 

 

In the three examples we have used, all of them had specific challenges tied with the data. 

The first had few data points, the second had extreme data points, and the third estimate had to be 

initiated using moments of distribution derived from industry data. More sophisticated approach 

would have looked at the prior and posterior distribution of the data (I’ve outlined the results in 

Appendix 3) 

 

To bypass moments estimation, I’ve used Maximum Likelihood (ML) estimation for Pearson’s 

(note that implementation of that algorithm essentially precludes from certain distributions (0, II, III, 

V, VII)) from being selected (REF - because those distribution represent a fixed relationship between 

parameters, vs a range of relationships), however this has not been the result for this analysis, as 

we’ve generated both III and V type of distribution depending on different random seed.   

https://cran.r-project.org/web/packages/PearsonDS/PearsonDS.pdf
https://cran.r-project.org/web/packages/extRemes/extRemes.pdf
http://sites.stat.psu.edu/~dhunter/papers/mixtools.pdf
https://pdfs.semanticscholar.org/d770/534dd5cf35883c365a258c77770fbb4bdc78.pdf


 

6  
 

3.2 EM and mixture distributions 

For Gaussian Mixture estimates, we have used EM algorithm, which, as ML estimation 

process reduces reliance on absent data. More information on estimating cumulants under ML can 

be found in Appendix 2. 

Note, that for lognormal model the EM algorithm could not be initiated without providing 

the method with a guesstimate of the probably means. We have used the moments derived from 

aggregated data (See Appendix 4). 

3.3 Extreme Value distributions 

For Extreme Value estimation I’ve used the embedded default values of the algorithm, which 

fit a Generalised Extreme Value distribution to the data. Default methodology is similar to Pearson’s 

approach in that it involves ML estimation procedure, and then decides on the distribution (Gumbel, 

Frechet, or Weibull) based on the parameters generated. Here my assumption was that all of the 

data points are large claims, which is not unreasonable given the description of the circumstances 

for each dataset. 

 

 

Section 4 - Comparison of approaches 
 

There are a number of different ways companies can account for the severity of their claims 

(large or otherwise). As the analysis above demonstrates, depending on the approach the tail 

percentile shifts significantly. This uncertainty is something that actuaries dealing with the subject 

should reflect upon, and draw conclusions. Not every dataset will generate reasonable tail values for 

lognormal data, or even more exotic pearson's distributions. We use the graphs illustrated below to 

summarise our observations by dataset: 
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4.1 Dataset 1: 44 values, representative of “other category” of large claims 

 

As can be observed that the dataset is scarce, and contains a significant outlier. The outlier 

will be common feature between first two datasets, but the absence of significant data to calibrate 

the tail presents a significant challenge to Pearson’s distribution, although the it is able to cope with 

the far better than the remaining options. Lognormal distribution and the EVT outcomes have 

somewhat similar shapes, however Lognormal does worse on the tail outcomes. Mixed normal 

distribution performs second worst after Pearson’s. 

4.2 Dataset 2: 206 values, representative of large losses to an entire portfolio over a period spanning 

20 years 
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The presence of a number of datapoint helps Pearsons distribution to perform better here - 

it’s fitting is comparable to the EV outcomes. Both Normal and Lognormal distribution struggle to 

accommodate both the long tail and the high kurtosis, and end up underfitting. In fact, mixed normal 

performs worse than the empirical data.   

 

4.3 Dataset 3: 4 values, with additional aggregated data from industry wide statistics  

In addition to analysing the four above approaches, we compare the outcomes against the 

distribution of sample means that are generated from the aggregate data statistics. Although not 

entirely comparable to other distributions they provide a useful tail cut-off and sense check. For 

Normal distribution these values are almost identical (the estimated tails for the four points, and 

smoothed industry statistics) suggesting that mixed normal distribution is an outright bad fit for the 

data. 

 

Despite the fact that the graph suggests that aggregate lognormal distribution has a longer 

tail than the one calibrated on the four points with some guidance for the industry statistics, this 

isn’t true. Because the mean of aggregate distribution is lower (as can be observed from higher 

probability of lower outcome values). This implies that despite the longer tail of the aggregate 

distribution, 99.5% is actually smaller than the estimate based on the 4 points of data.  



 

9  
 

 

Pearson’s distribution throws an error, which results in two peaks of the outcomes. 

Considering that the data is very scarce (4 data points) this is not unexpected. Normal approximation 

does the best job of accentuating the probable two underlying distributions. However lognormal 

seems a more sensible approach as it ignores the two humps and smoothes over them. 
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Section 5 - Analysis 
Below we present a summary table of 99.5% of outcomes for the fitted values of the 

distribution. 

 

Models give the ratio of the number that a particular fit produces to empirical 99.5% 

percentile. For most distributions EVT gives the most conservative number, however, Pearsons looks 

to be able to give comparable number for datasets with larger number of points. 

   

Example Number 
of data 
points 

Skew kurtosis Normal 

at 1 in 
200 

Lognormal 
at 1 in 200 

Pearsons EVT Profession
al estimate 

1 44 3.64 17.03 1.4 2.8 1.3 3.6 [please fill] 

2 206 4.37 24.9 0.8 1.3 4.4 4.3 [please fill] 

3a (small 
estimated 
from large) 

4 (110) 0.45  1.87 1.8 (1.8) 2.4 (1.9) 1.1 3.6 [please fill] 

 

The above approaches present a range of outcomes that the underlying distribution will 

take. Although expert software will go a long way to helping you estimate the underlying uncertainty 

of the individual risk severity 

 

Section 6  - Conclusion 
The body of the claim severity is rarely correlated to the tail. We ignored the considerations 

of cut-off and exploration of the implications of this cut off. This is not meant to imply that this 

analysis is not significant, but rather that we are not able to incorporate all the individual 

considerations that go into these assumptions systematically. 

 

Our goal was to provide a useful tool in terms of how risk appetite statement really sits with the 

current insurance gaps. Although the original intention was to include modelling of correlation 

between frequency and severity into the picture, we hope this paper provides the necessary push to 

get capital actuaries and risk managers to think about the real tails of their severity distributions. 

  



 

11  
 

Appendix 1 - References by topic 
http://imaging.mrc-

cbu.cam.ac.uk/methods/BayesianStuff?action=AttachFile&do=get&target=bilmes-em-algorithm.pdf 

<-understandable, contains HMM 

 

https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf p4 EM algorithm 

http://cs229.stanford.edu/notes/cs229-notes8.pdf similarly 

 

Several methods: http://math.usask.ca/~longhai/teaching/stat812-1409/rdemo/EM_examples.pdf  

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Expectation_Maximization

_(EM) 

 

http://rstudio-pubs-static.s3.amazonaws.com/1001_3177e85f5e4840be840c84452780db52.html 

 

 

https://pdfs.semanticscholar.org/d770/534dd5cf35883c365a258c77770fbb4bdc78.pdf <-

excellent!!!! 

 

 

Extremes Primer http://grotjahn.ucdavis.edu/EWEs/extremes_primer_v9_22_15.pdf 

 

http://imaging.mrc-cbu.cam.ac.uk/methods/BayesianStuff?action=AttachFile&do=get&target=bilmes-em-algorithm.pdf
http://imaging.mrc-cbu.cam.ac.uk/methods/BayesianStuff?action=AttachFile&do=get&target=bilmes-em-algorithm.pdf
https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf
http://cs229.stanford.edu/notes/cs229-notes8.pdf
http://math.usask.ca/~longhai/teaching/stat812-1409/rdemo/EM_examples.pdf
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Expectation_Maximization_(EM)
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/Expectation_Maximization_(EM)
http://rstudio-pubs-static.s3.amazonaws.com/1001_3177e85f5e4840be840c84452780db52.html
https://pdfs.semanticscholar.org/d770/534dd5cf35883c365a258c77770fbb4bdc78.pdf
http://grotjahn.ucdavis.edu/EWEs/extremes_primer_v9_22_15.pdf
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Appendix 2 - Pearsons ML cumulants derivation example 
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Appendix 3 -  [TBC] Derivation of posterior mixed distribution for Dataset 3 
 

Prior example assumption of lognormal distribution for the  

Data 

Posterior 

 

Estimates 
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Appendix 4 -  Dealing with aggregated dataset 
 

Estimating moments from large claims dataset. 

 

Given aggregated numbers for frequency and aggregate severity of large claims in the industry, we: 

1. Made assumption about frequency being distributed as poisson process 

2. That allowed us to assume that aggregate severity was a compound poisson distribution 

3. Which in turn allowed us to derive individual mean and standard deviation of the 

distribution  

4. To compute the possible input values into the two sample distribution we calculated the 

natural logarithm of the average claim for each of the past years, and computed the 

standard deviation of them. Then we applied roughly 1 standard deviation mean on either 

side of the average claim mean, to get potential initiation values for lognormal distribution 

 

When computing the aggregate lognormal distribution we used the parameters estimated in step 2. 

This (almost certainly) provides an underestimation of overall aggregate distribution, but the tail 

serves as a useful lower boundary check for the fitted lognormal distribution, (which looks more or 

less reasonable). 

 

Further information on the procedure can be found in Excel file. 
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Appendix 5 - R code 

## Generate sample 

library(extRemes) 

library('PearsonDS')## find Pearson distribution with these parameters 

 

library(mixtools) 

# gives the distribution number and it's parameters 

## compare with method of moments estimator 

 

 

 

 

# result mean - 0.95, var = 1.64 skew  = 0.9, kurtosis = 1.4?? 

 

Book1 <- read.csv("C:/Users/ANNBAB/Desktop/papers/Book1.csv", header=FALSE, 

stringsAsFactors=FALSE) 

Book2 <- read.csv("C:/Users/ANNBAB/Desktop/papers/Book2.csv", header=FALSE, 

stringsAsFactors=FALSE) 

Book3<-c(3400000,1560000,2000000,1200000)# data set 3 

data<-as.numeric(unlist(Book3))#change for dataset 

hist(data, breaks=15) 

#pearsons 

ppar<-pearsonFitML(as.vector(data)) 

print(unlist(ppar)) 

vector1<-c(ppar$a,ppar$b,ppar$location,ppar$scale)# for Book2 use ppar$a,ppar$b, 

ppar$shape,ppar$location,ppar$scale) 

#EVT 

EVT_fit<-fevd(data) 

p <- EVT_fit$results$par 

EVT_r<-revd(1000,loc = p[ 1 ], scale = p[ 2 ], shape = p[ 3 ] ) 

qevd( 0.995, loc = p[ 1 ], scale = p[ 2 ], shape = p[ 3 ] ) 
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#lognorm 

log_data<-log(data, base = exp(1)) 

set.seed(1234) 

gm<-normalmixEM(log_data,k=2, mu = c(14,15), sigma = 0.5) #use this for Book3->#, mu = c(14,15), 

sigma = 0.5) 

l_l<-gm$lambda 

l_mu<- gm$mu  # 

l_s<-gm$sigma # 

#norm 

gm<-normalmixEM(data,k=2) 

l<-gm$lambda 

mu<- gm$mu  # 

s<-gm$sigma # 

# compare 

 

 

max(data) 

x = seq(0,4000000,10) 

DATA1<-rpearsonI(10000,params=vector1)#Book1, Book3 

p_truth<-dpearsonI(x,params=vector1)#Book1, Book3 

DATA2<-rpearsonV(10000,params=vector1)#Book2 

p_truth<-dpearsonV(x,params=vector1)#Book2 

l_truth = l_l[1]*dlnorm(x,l_mu[1],l_s[1]) + l_l[2]*dlnorm(x,l_mu[2],l_s[2]) 

l_truth1 = rlnorm(l_l[1]*10000,l_mu[1],l_s[1]) + rlnorm(l_l[2]*10000,l_mu[2],l_s[2]) 

l_truth0 = dlnorm(x,14.44,0.468) # aggregate data for Book3 

l_truth01=rlnorm(20000,14.44,0.468) #aggregate data for Book3 

truth = l[1]*dnorm(x,mu[1],s[1]) + l[2]*dnorm(x,mu[2],s[2]) 

truth1 = rnorm(l[2]*10000,mu[1],s[1]) + rnorm(l[2]*10000,mu[2],s[2]) 

plot(density(data),lwd=1, xlab="claim size ($)",xlim=c(0, max(x)),ylim=c(0,0.0000008), main = 

"Comparison of model fit")# for book3 use ylim ylim=c(0,0.0000008) 

lines(x,truth,col="red",lwd=1) 

lines(x,l_truth,col="blue",lwd=1) 
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lines(x,p_truth,col="orange",lwd=1) 

lines(x,l_truth0,col="brown",lwd=1) 

#legend("topright",c("data PDF", "Pearsons PDF","Mix Normal", "Mix Lognormal"), lty=1, 

col=c('black', 'orange', 'red','blue'), bty='n', cex=.75) 

#use for book 3 # 

legend("topright",c("data PDF", "Pearsons PDF","Mix Normal", "Mix Lognormal", "Aggregate"), lty=1, 

col=c('black', 'orange', 'red','blue','brown'), bty='n', cex=.75) 

plot(EVT_fit,"density",main = "Comparison of model fit for Extreme Value") 

quantile(DATA1, 0.995)/quantile(data,0.995) 

qevd( 0.995, loc = p[ 1 ], scale = p[ 2 ], shape = p[ 3 ] )/quantile(data,0.995) 

par(mfrow=c(1,2)) 

 

 


